Supplementary material

Strain	Marker of genotype	Reference
WT		Trautmann et al. 2012
ΔhoxH	sll1226:km ^R	Appel et al. 2000
Δ hox (Δ HoxEFUYH)	sll1220, sll1221,sll1222,sll1223,sll1224, ssl2420,	This study
	<i>sll1225, sll1226::km^R</i>	
ΔhoxW	$slr1876::sp^{R}$	Hoffmann et al. 2006
Δhox/hoxYH	<i>sll1220, sll1221,sll1222,sll1223,sll1224, ssl2420,</i>	This study
	<i>sll1225, sll1226::km^R/ sll1224, sll1226::gm^R</i>	
∆cyd∆cox	slr1379, slr1380::sp ^R , slr1137::em ^R	This study
$\Delta flv3\Delta flv24\Delta cyd\Delta cox$	sll0550::cm ^R , sll0219, sll0217::gmR; slr1379,	This study
5	$slr1380::sp^{R}$, $slr1137::em^{R}$	
Δflv3Δflv24ΔcydΔcoxΔhox	sll0550::cm ^R , sll0219, sll0217::gm ^R ; slr1379,	This study
	<i>slr1380::sp^R, slr1137::em^R, sll1220,</i>	
	sll1221,sll1222,sll1223,sll1224, ssl2420,	
	<i>sll1225, sll1226::km^R</i>	
∆cyd∆cox∆arto	<i>slr1379, slr1380::sp^R, slr1137::em^R, slr2082,</i>	This study
5	$slr2083$: gm^R	
Δ ndh1 (Δ ndhD1 Δ ndhD2)	<i>slr0331::km^R, slr1291::cm^R</i>	Wang et al. 2022
Δ sdh (Δ sdh1 Δ sdh2)	sll1625::gm ^R , sll0823::gm ^R	This study
Δ ndh2 (Δ ndbA Δ ndbB Δ ndbC)	$slr0851::gm^{R}$, $slr1743::cm^{R}$, and $sll1484::sp^{R}$	This study

Supplementary Table 1: List of strains that were constructed and utilized in this study.

Primer name	Sequence	Construct	
hoxout1	CGTTGTAAAACGACGGCCAGTGCCATTATCTGCCAGTGAAGCCCTT		
hoxin1Km	n1KmCTTTCTGGCTGGATGATGGGGGGGGGGGGGATGATAAAAGATGATTGGGAGAGGCCTAn2KmATCAGAGATTTTGAGACACAACGTGGGGGCATCACCGAGGGCATATCT		
hoxin2Km			
hoxout2	GGAAACAGCTATGACCATGATTACGGTTCAGCCAGCAACTAGCCCTTT		
ARTOout1	CTATAGGGCGAATTGGGTACCTGGATCAGCTAATTACCCTAATTAGTA		
ARTOin1Gm	1Gm GGTTCGTGCCTTCATCCGTCGACAGCGGGAAAGGGCAGTGCTTGTTT 2Gm CGCCACCTAACAATTCGGTCGACCCAGCGAATTAAATCTTTGGCAT		
ARTOin2Gm			
ARTOout2	AGGGAACAAAAGCTGGAGCTCTAGAATTCCACAGTCATAGGCAA		
ndbAout1	CTATAGGGCGAATTGGGTACAATATTTTCGCCGTTGCTATGAA		
ndbAin1	GGTTCGTGCCTTCATCCGTCGACGCATGGTCCTCCAACACCACTTT CGCCACCTAACAATTCGGTCGACTAATATATTTGTCCTGGGGGGATTT		
ndbAin2			
ndbAout2	AGGGAACAAAAGCTGGAGCTAGCTATGGTGGGGGTTTACCGAA	1	
ndbBout1	CTATAGGGCGAATTGGGTACCCACCAAAAGGCGATCGCCACTTA	1	
ndbBin1	TCAATAATATCGAATTCCTGCAGCCGTGGTCGAGCGTCCGTC		
ndbBin2			
ndbBout2	AGGGAACAAAAGCTGGAGCTATGGGGGGTGGTAATAGGCCATT	1	
ndbCout1	CTATAGGGCGAATTGGGTACAATCACCGCCGCCCAGGTTCAAT		
ndbCin1	TTGGCACCCAGCCTGCGCGAAAAGTGGGGGCCAATTTCCTGGAAA	Construction	
ndbCin2	ATCCGCATTAAAATCTAGCGAGGGCACCGGAAAGGGAAAGGGCTCCTT		
ndbCout2	AGGGAACAAAAGCTGGAGCTGGACAATGATGGGATGGAGGGTAT	GGGATGGAGGGTAT	
Flv3out1	TGGTGTTGGCCCATCCAGCCCGGTA		
Flv3in1	AAATGCTTCAATAATATCGAATTCCTGCAGAGGGGGGGGG	Construction	
Flv3in2	ATCCGTTAGCGAGGTGCCGCCATCAAGCTTCATCGCAAAGTCGGCAATTATTACT	of ∆ <i>flv3</i>	
Flv3out2	AACCCTGGGGTCAAAACTCTCCGGG	1	
0217out1	CCACAAAGTTTTCTATGGTTAC GGTTCGTGCCTTCATCCGTCGACTCTGTATGATTGACGATCAAATA		
0217in1			
0219in1	CGCCACCTAACAATTCGGTCGACCGATCATGTCCTGGTTTATGCAA	of <i>∆flv24</i>	
0219out1	CAAAACTGACGTCAGCATGGCATT		
cydout1	tl CTATAGGGCGAATTGGGTACAGAAGGAGTTTACGATCGCCAA		
cydin1	TTGGCACCCAGCCTGCGCGATTACTCAAAAAATCCTGCATCTGTAA		

Suppelemtary table 2: List of primers that were utilized in this study.

cydin2	ATCCGCATTAAAATCTAGCGAGGGCAAAATTGTCACCGACTAGGGAGTT	
cydout2	AGGGAACAAAAGCTGGAGCTTGCAACGGGTCAGCATCCAATTT	
coxloutl	CTATAGGGCGAATTGGGTACAATTACGGTTAAAGCAGGAT	
coxin1	AGAGATTTATCTAATTTCTTTTTCGTCGACGATTCTCAGCGGCAATAGTCATAAA	Construction
coxin2	AATTATTTAATAAGTAAGTCGACGATGCGGCAGGAAGTTAGTT	of Δcox
coxout2	AGGGAACAAAAGCTGGAGCTAAACTAACTTCCTGCCGCATC	
sdhB1out1	CTATAGGGCGAATTGGGTACGACAGTTCTGCTTCCGGTCAA	
sdhB1in1	GGTTCGTGCCTTCATCCGTCGACATTTTGCAAACAATTTCCATGGTA	Constuction
sdhB1in2	CGCCACCTAACAATTCGGTCGACTTCGTTTATTTGACTTGATGGAT	of the $\Delta sdh1$
sdhB1out2	AGGGAACAAAAGCTGGAGCTTGTGACCTGGCAATTTTGATGT	
sdhB2out1	CTATAGGGCGAATTGGGTACGAGAGTTTGGCCCAAAAGTTGA	
sdhB2in1	TCAATAATATCGAATTCCTGCAGCTGTTGCGGTTTTTGGCGCAA	Constuction
sdhB2in2	AGCGAGGTGCCGCCATCAAGCTTGCGGAAAAACTTGCCAATTTCT	of the $\Delta sdh2$
sdhB2out2	AGGGAACAAAAGCTGGAGCTTAACCGTTCCAATCGACTTT	
hoxE_89f	TTTTGGCTACCTGGAAGAGG	
hoxE_89r	AAAAAGTCGCCACTCCAAAC	
hoxF_84f	TTTTGCCCTCACAGGAAAAG	
hoxF_84r	ATTTCCTCCACCACTTGTCG	
sll1222_84f	CGCTCAACGGAAATGATACC	
sll1222_84r	TATCCCCCACATGGCAAG	
hoxU_93f	CGAAGGCAATCATGTCTGTG	primers
hoxU_93r	AATCGGCTGTGATCCATACC	used for
$hoxY_92f$	CGGCTGTCATATGTCCTTCC	real-time
hoxY_92r	GATCAGAACCAACGGGACTG	PCR
sll1223_100f2	CCAAACGAATCATGGAGAAG	
sll1223_100r2	TGGCCAAAAACTCCTTTG	
HoxH_88f	GGACAGTGATCCCGCTACTC	
HoxH_88r	AAATTGCCGTAACCGAATACC	1
16S_91f	AAGTCATCATGCCCCTTACG	
16S_91r	ATGGGATTCGCTTACTCTCG	

Supplementary Figure 1: Oxygen and hydrogen concentration in a WT culture grown on arginine and glucose without purging, in order to exclude outgasing of hydrogen (for details see text). The cells were brought under dark, anoxic conditions from 0 to 0.73h in order to prove their ability to produce fermentative hydrogen. The hydrogen concentration reached 21 µmol in this period. As soon as the cells were illuminated hydrogen was consumed. The cultures were purged with ambient air until they were saturated with oxygen (0.85h to 0.95h). The aeration was turned off and the cultures were left under continous light. The oxygen concentration was stable and no hydrogen production could be detected under these conditions.

Supplementary Figure 2: Transcription and expression of the hydrogenase subunits in cultures cultivated on arginine and glucose. (A) Amount of *hoxH* mRNA in WT on arginine and glucose (BG11₀AG) relative to WT on nitrate (BG11). 16S rRNA was utilized as reference gene. (B) Amount of *hox operon* mRNA in WT on arginine and glucose (BG11₀AG) relative to WT on nitrate (BG11). 16S rRNA was utilized as reference gene. (C) Protein expression of the HoxE, F, U, Y, H subunits in the WT on arginine and glucose (BG11₀AG) relative to WT on nitrate (BG11). Δhox , in which the *hoxEFUYH* operon was deleted, was utilized as a negative control to demonstrate the specificity of the utilized antibodies. (D) Amount of active hydrogenase measured upon the addition of methylviologen in WT on nitrate (N) and on arginine and glucose (AG). Two cultures with equal optical densities (OD₇₅₀) are compared. (E) Total amount of protein in WT on nitrate (N) and on arginine and glucose (AG) relative to OD₇₅₀.

In order to quantify the amount of functional hydrogenase, which should correlate with Hox protein levels (Supplementary Figure 2C), hydrogen production was determined upon addition of the artificial electron donor methylviologen (MV). The cells cultivated on arginine and glucose contained only about half the amount of hydrogenase activity compared to cells that were cultivated on nitrate (Supplementary Figure 2D). Obviously, these numbers don't give a conclusive picture. Even though transcription of the *hox* operon was enhanced in cells that were cultivated on arginine and glucose (Supplementary Figure 2A and 2B), Hox protein levels remained

largely unchanged or declined (Supplementary Figure 2C). For some reasons, the demand for additional hydrogenase expression, which was observed in the increased transcription levels, was not implemented on a protein level and did thus not correlate to increased hydrogenase activity. Whereas transcript levels were related to equal amounts of 16S rRNA as reference gene, protein contents were related to total protein amount and MV based hydrogenase activity measurements to equal optical densities OD₇₅₀ of cultures. As immunoblots and hydrogenase activity measurements, which were both utilized to determine protein levels gave different results, we tested the amount of total protein relative to OD₇₅₀. Total protein amount relative to OD₇₅₀ was reduced to 44 % in photomixotrophic cultures on arginine and glucose (Supplementary Figure 2E). This explains why hydrogenase activity measurements did not correlate well with immunoblots. It might furthermore indicate that protein biosynthesis might be disturbed, which could explain why additional *hox* transcriptions were obviously not translated. However, this explanation is speculative and requires further testing.

Supplementary Figure 3: Southernblot of the WT and the Δhox strain with a probe against *hox*: Expected band sizes were 11300 bp for the WT and 5200 bp for Δhox .

Supplementary Figure 4: PCR to test for segregation of $\Delta hox/hoxYH$. A probe against *hox* was utilized. The expected band sizes were: Δhox : 1750 bp; $\Delta hox/hoxYH$: 4400 bp. Strain $\Delta hox/hoxY_H$ is not relevant for this study.

Supplementary Figure 5: Southernblot for testing segregation of the mutants as indicated. Probes against cox and cyd were utilized. Expected band sizes for the probe against cox were 4794 bp for the WT and 4794 bp for $\triangle cox$. For the probe against *cyd* 1734 bp were expected for the WT and 3028 bp were expected for the mutant. Cyd is abbreviated as Y and Cox as O. Only the WT and $\triangle flv3\Delta flv24\Delta cox\Delta cyd$ (here labeled as $\triangle flv3\Delta flv24\Delta cox\Delta cyd\Delta hox$ (here labeled as $\triangle flv3\Delta flv24\Delta cox\Delta cyd\Delta hox$) are relevant for this study.

Supplementary Figure 6: Southernblot of the WT and different mutants as indicated with a probe against *arto*: Expected band sizes were 3860 bp for the WT and 1870 bp for $\Delta arto$.

Supplementary Figure 7: PCR with genomic DNA of different mutants in order to test for their segregation. (A) Segregation of $\Delta ndh2$ ($\Delta ndbA\Delta ndbB\Delta ndbC$) and (B) segregation of Δsdh ($\Delta sdh1\Delta sdh2$). Expected sizes of PCR products: ndbA primer pair WT: 1388 bp, $\Delta ndh2$: 1550 bp; ndbB primer pair; WT: 1663 bp, $\Delta ndh2$: 1884 bp; ndbC primer pair; WT: 2000 bp, $\Delta ndh2$: 2270 bp. The expected band sizes for Δsdh were: sdh1 primer pair; WT: 1470 bp, Δsdh : 1530 bp; sdh2 primer pair; WT: 1680 bp; Δsdh : 2390 bp. $\Delta ndh2$ and Δsdh were completely segregated.

DNA dilutions (1: 1:30, 2: 1:300; and 3: 1:3000). The threshold was set to a normalized fluorescence of 10^{-1} for all samples.