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Abstract

A common feature of light stress in plants, algae, and
cyanobacteria is the light-induced damage to the pho-
tosystem Il complex (PSII), which catalyses the photosyn-
thetic oxidation of water to molecular oxygen. A repair
cycle operates to replace damaged subunits within
PSII, in particular, the D1 reaction centre polypeptide,
by newly synthesized copies. As yet the molecular de-
tails of this physiologically important process remain
obscure. A key aspect of the process that has attracted
much attention is the identity of the protease or prote-
ases involved in D1 degradation. The results are sum-
marized here of recent mutagenesis experiments that
were designed to assess the functional importance of
the DegP/HtrA and FtsH protease families in the cya-
nobacterium Synechocystis sp. PCC 6803. Based on
these results and the analysis of Arabidopsis mutants,
a general model for PSII repair is suggested in which
FtsH complexes alone are able to degrade damaged
D1.

Key words: Cyanobacteria, DegP/HtrA proteases, FtsH
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Introduction

An inevitable side-reaction of oxygenic photosynthesis is
the light-induced formation of reactive oxygen species
(ROS) during photosynthetic electron transport (Asada,
1999). Despite the presence of scavenging enzymes, ROS
cause damage to a broad spectrum of cellular components
including protein, pigment, lipids, and nucleic acid. The

chief target in the thylakoid membrane is the photosystem II
complex (PSII) which functions as a water:plastoquinone
oxidoreductase (Prasil et al., 1992; Aro et al., 1993; Ohad
et al., 1994). Damage to PSII is thought to be due mainly to
the action of singlet oxygen generated from triplet chloro-
phyll species formed following charge recombination within
PSII. However, the highly oxidizing species generated by
PSII to oxidize water can also cause damage. These two
processes are sometimes referred to as acceptor- and donor-
side mechanisms, respectively (Barber and Andersson,
1992).

Although PSII is composed of over 25 subunits, the
reaction centre subunit D1 appears to be the chief site of
photodamage in PSII (Kyle et al., 1984; Ohad et al., 1984;
reviewed by Aro et al., 1993; Adir et al., 2003). The reason
for this is probably due to the fact that D1 plays a key role in
binding the CaMn oxygen-evolving complex and the chlo-
rophyll molecules involved in the charge recombination re-
actions that can form singlet oxygen (Diner and Rappaport,
2002). However, it is increasingly clear that damage is not
exclusive to D1 and, depending upon illumination condi-
tions, other PSII subunits are damaged such as D2 and CP43
(Komenda and Masojidek, 1995).

A key feature of D1 that has been recognized since 1974
is its rapid synthesis and degradation in response to light
(Bottomley et al., 1974; Eaglesham and Ellis, 1974). This is
assumed to reflect a repair cycle that is used to replace
a damaged D1 subunit within a damaged PSII complex by
a newly synthesized copy (Aro et al., 1993). A remarkable
feature of this process is the specificity. Only the damaged
subunit is replaced; the rest of the subunits in the complex
appear to be recycled. As yet, the molecular details of PSII
repair are ill-defined, despite the fact that PSII is considered
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to represent one of the most vulnerable enzymes in plants to
light stress, not only because of its relatively high rates of
damage but also because the repair process itself is sensitive
to ROS (Nishiyama et al., 2001).

So far most of the understanding of the processes
involved in PSII repair has been based upon experimental
data obtained from higher plants, mainly from experiments
conducted in vitro. However, a variety of recent work
suggests that the cyanobacterium Synechocystis sp. PCC
6803 is likely to play an important role in investigating PSII
repair, particularly for studies in vivo, and that many of
the features could be conserved in the chloroplast. Recent
advances in determining the structure of PSII from the
related cyanobacterium Thermosynechococcus elongatus
have also strengthened the case for using Synechocystis
6803 (Ferreira et al., 2004). In this paper, recent work
from our laboratories on the role of FtsH proteases in D1
degradation is summarized and our current working model
of PSII repair is described.

The PSII repair cycle in cyanobacteria

Figure 1 presents a hypothetical scheme for PSII repair in
cyanobacteria such as Synechocystis. This model is based
largely on schemes developed for D1 replacement in the
chloroplast (Aro et al., 1993). The key aspects are (i) photo-
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damage to PSII so that electron transport is impaired, (ii)
induction of a conformational change that signals the need
to remove the damaged subunit, (iii) monomerization of
PSII and partial disassembly of the PSII complex to allow
access to the damaged subunit, (iv) degradation of damaged
D1 and synchronized replacement by a newly synthesized
subunit (Komenda and Barber, 1995), and (v) rebinding of
various extrinsic proteins and the light-driven assembly
(termed photoactivation) of the CaMn cluster, which can
only occur after C-terminal processing of the D1 subunit.

Probing the role of the DegP/HtrA and FtsH
families of protease in D1 degradation in vivo

Recently, much interest has focused on the identification of
proteases that are involved in the degradation of damaged
D1. Based on a variety of studies conducted in vitro, a
model has been proposed for chloroplasts in which dam-
aged D1 is removed through the action of two proteases
(reviewed by Adam and Clarke, 2002). DegP2, which is
a member of the DegP/HtrA family of serine proteases, is
proposed to perform the primary cleavage event within
the Qg-binding pocket (HauBiihl er al., 2001) in a GTP-
regulated process (Spetea et al., 1999), after which, the two
breakdown products are removed by one or more members of
the FtsH protease family (Lindahl ez al., 1996, 2000).
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Fig. 1. Model of the PSII repair cycle in Synechocystis sp. PCC 6803 (kindly provided by Paulo Silva and Jon Nield). A functional dimeric PSII complex
undergoes a series of disassembly steps to allow the synchronized replacement of a damaged D1 subunit by a newly synthesized copy. The PSII complex

is then reassembled and the water-oxidizing CaMn cluster photoactivated.



In Synechocystis 6803, among the 62 predicted proteases/
peptidases (Sokolenko et al., 2002), there are three potential
members of the DegP/HtrA family of proteases, termed
HtrA (slr1204), HhoA (s111679), and HhoB (sll 1427). This
class of protease possesses the catalytic triad typical of
serine proteases and contains PDZ domains involved in
binding to the C-terminal region of target proteins. Struc-
turally DegP/HtrA proteases are thought to be hexameric
and to form a chamber in which either refolding or pro-
teolysis of protein occurs (reviewed by Clausen et al., 2002).
To test the involvement of the DegP/HtrA proteases in PSII
repair, a triple mutant has been constructed in which all
three genes were insertionally inactivated. Although growth
of the mutant is sensitive to high irradiance (Silva et al.,
2002), recent pulse-chase analyses and oxygen-evolution
assays indicate little effect on PSII repair and D1 turnover
(PJ Nixon, unpublished data). These data therefore suggest
that these proteases are not crucial for D1 turnover in
Synechocystis 6803. Given this it is likely that the involve-
ment of DegP2 in PSII repair in chloroplasts might have
occurred after the divergence of cyanobacteria and chloro-
plasts. Importantly, though, PSII repair has not so far been
examined in a degP2 mutant in vivo, so it remains unclear
how relevant the DegP2 pathway is for D1 cleavage
in planta.

The FtsH proteases are membrane-bound, and contain
an AAA* module (ATPase associated with various cellular
activities) and a Zn**-binding site which catalyses pro-
teolysis (Fig. 2A) (Ogura et al., 1991). The C-terminus
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might also contain a leucine zipper (Shotland et al., 2000).
In Synechocystis 6803 there are four potential FtsH pro-
teases, two of which are crucial for cell viability (slr1390
and slr1604) and two that are dispensable (slr0228 and
sll1463) (Mann et al., 2000). Recent studies on an slr0228
insertion mutant have revealed that this particular member
is needed for photoprotection, and is required for normal
rates of D1 degradation in vivo as assessed in pulse-chase
assays (Silva et al., 2003). Importantly, full-length D1 was
stabilized in the mutant during light stress and there was no
evidence for the accumulation of D1 fragments, which
would be expected if the role of FtsH were solely to remove
D1 fragments. FtsH (slr0228 and slr1604) were also found
at low levels in His-tagged PSII preparations of Synecho-
cystis 6803 (Kashino et al., 2002; Silva et al., 2003).
Although there are a number of interpretations of these
data, the simplest model is one in which FtsH (slr0228)
plays a direct role in the early stages of D1 degradation, not
just in the removal of breakdown fragments.

In the case of Arabidopsis thaliana, nine FtsH homo-
logues are targeted to the chloroplast (Sakamoto et al.,
2003). Mutation of FtsH2 (VAR?2) and FtsH5 (VAR1) give
rise to a yellow variegated phenotype, whereas ftsH1, ftsH6
or ftsHS mutants show no visible phenotypic difference to
WT (Sakamoto et al., 2003). Importantly both varl (ftsHS)
and var2 (ftsH2) mutants show impaired PSII repair (Bailey
et al., 2002; Sakamoto et al., 2002). In the case of var2,
degradation of damaged D1 was blocked at an early stage,
in a similar manner to that observed in the cyanobacterial
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Fig. 2. Structure of the FtsH protease. (A) Schematic representation of a Synechocystis thylakoid FtsH protease subunit showing the two transmembrane
helices, the ATPase domain (AAA™) containing various conserved sequence elements, the Zn>*-binding site, and a possible leucine zipper. (B) Cartoon
suggesting how a membrane subunit such as D1 (arrowed) might be translocated through a central pore within the hexameric FtsH holoenzyme and
subsequently degraded. For clarity only the ATP-ase and the Zn**-binding site are indicated for each FtsH subunit.
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ftsH (slr0228) mutant (Bailey er al., 2002). It therefore
seems that the role of FtsH in PSII repair and D1 turnover
might be conserved in both cyanobacteria and higher
plants.

Model for FtsH-mediated D1 degradation

Based on what is known about the mechanism of FtsH
proteases, particularly in E. coli (Akiyama and Ito, 2003)
and mitochondria (Langer, 2000), a general model for D1
degradation in cyanobacteria and chloroplasts has been
suggested (Silva et al., 2003). It is proposed that FtsH
(either homo- or hetero-oligomeric) forms a hexameric ring
in the membrane. Damaged D1 is then translocated through
a central pore in an ATP-driven process and subsequently
degraded at the Zn**-centre (Fig. 2B). The key feature of
FtsH-mediated proteolysis of membrane proteins in E. coli
is that it is a highly processive reaction (Akiyama, 2002)
and can occur from either the N- or C-terminus (Chiba
et al., 2002), or possibly from the ends generated after an
FtsH-mediated endoproteolytic cleavage event (Shotland
et al., 2000). Given that the Zn**-binding site is likely to be
located on the stromal side of the membrane (Lindahl ez al.,
1996), proteolysis would be initiated from stromally ex-
posed regions of DI such as the N-terminus or after
cleavage in the Qg-binding pocket. Proteolysis from the
N-terminus is particularly attractive, as this would allow
potential synchronization between the co-translational in-
sertion of a newly synthesized D1 subunit into PSII and the
removal of the damaged subunit. It would also explain why
N-terminal phosphorylation of D1 and other PSII core
subunits might control their degradation in the chloroplast
(Koivuniemi et al., 1995).

In order to confirm this model it will probably be
necessary to develop an in vitro assay for studying FtsH-
mediated degradation of D1, probably along the lines of
one recently developed for E. coli FtsH, which required the
use of a membrane-based system rather than detergent-
solubilized enzyme and substrate (Akiyama and Itoh, 2003).

What is the signal that triggers D1 degradation
in vivo?

Studies in E. coli have highlighted three factors that are
important for FtsH-mediated degradation of membrane
proteins: (i) the exposed N-terminus of the target protein
must be of sufficient length (greater than 20 residues) to
engage FtsH; the precise sequence being less important
(Chiba et al., 2000), (ii) the target protein must be in
a relatively unfolded or destabilized state as FtsH is a weak
unfoldase (Herman et al., 2003), and (iii) FtsH must contain
transmembrane helices, possibly to interact with the target
membrane protein (Akiyama and Ito, 2001).

Exposure of PSII to light is known to damage pigments
and to oxidize protein side-chains (Sharma et al., 1997),

both of which will act to destabilize the PSII structure. As
mentioned earlier, the involvement of D1 in binding many
of the key co-factors in PSII means that D1 is potentially
more liable to damage and destabilization. This, in combi-
nation with an accessible N-terminus, would be the trigger
for FtsH-mediated proteolysis to proceed. Initial binding of
FtsH to PSII could be through the interaction of transmem-
brane helices or even through sequences on the lumenal
side of the membrane. In this respect, Bailey and colleagues
(Bailey et al., 2002) have highlighted an 81-amino-acid
sequence of FtsH that is predicted to lie in the lumen of the
chloroplast. This region is highly conserved in oxygenic
photosynthetic organisms, perhaps because it is involved in
recognizing sequences in PSIIL.

One attractive feature of this model is that FtsH would
act to remove destabilized D1, and potentially other PSII
subunits, no matter where the damage had occurred. Thus
a precise triggering event need not commit D1 to degrada-
tion; rather it could be the accumulation of many destabil-
izing events. In principle, it should be possible to isolate
DI mutants that have slower rates of DI degradation
because of enhanced stabilization of structure or perturbed
interaction with FtsH. Interestingly mutants in both the
Qg-binding pocket, at D1-Ser264 and D1-Ala263 (Dalla
Chiesa et al., 1997), and at D1-His92 on the lumenal side
of the membrane, slow D1 degradation (Lupinkova and
Komenda, 2004). What is clear is that the so-called ‘PEST’-
like sequence located close to the Qg-binding pocket of D1,
and suggested to be important for D1 degradation (Greenberg
et al., 1987), is not required for D1 turnover (Nixon et al.,
1995).

The oligomeric structure of FtsH and its possible
interaction with prohibitins

Given the importance of FtsH (sIr0228) for the removal of
damaged D1 in Synechocystis 6803, future studies will aim
to clarify the location and oligomeric organization of
sIr0228 in the membrane. In the case of A. thaliana, initial
indications are that VAR2 might exist both as a homocom-
plex and a heterocomplex with VAR1 (Sakamoto et al.,
2003). Rodermel and co-workers have also shown that over-
expression of FtsH8 can rescue the ftsH2 (var2) mutation,
so it seems likely that the chloroplast FtsH subunits could
assemble to give rise to a heterogeneous population of hexa-
meric complexes, each with a potentially different activity
(Yu et al., 2004).

Of particular interest will be the identification of possible
interacting partners of FtsH (slr0228). In E. coli it is known
that FtsH forms a supercomplex with the HAIKC complex
(Saikawa et al., 2004), and in yeast mitochondria with a
large heterooligomeric prohibitin complex (Steglich et al.,
1999). Both HIKC and prohibitin are members of the SPFH
(stomatin, prohibitin, flotillin, HAKC) superfamily of pro-
teins (Tavernarakis et al., 1999). One role of the prohibitin



complex in yeast mitochondria is to stabilize newly syn-
thesized membrane subunits (Nijtmans et al., 1999). Con-
sequently, members of the SPFH family might be involved
in PSII repair, possibly either to stabilize newly synthe-
sized D1 prior to insertion into a PSII complex in a post-
translational step, or to stabilize other PSII subunits to prevent
unwanted FtsH mediated proteolysis (Silva and Nixon,
2001). In this regard, it is interesting to note that there are
a number of prohibitin and stomatin homologues predicted
from analysis of the Synechocystis genome sequence.
Another key question that has been addressed is whether
FtsH (s1r0228) functions solely in PSII repair or whether it
has a general role in the removal of damaged or unassem-
bled proteins from the thylakoid membrane. Recent experi-
ments have been performed to look at protein turnover in
PSII mutants unable to assemble a functional PSII complex
because synthesis of a key PSII subunit is blocked. In all
cases degradation of the remaining PSII subunits, which
usually occurs rapidly in the presence of FtsH (slr0228) is
reduced dramatically in its absence (PJ Nixon, unpublished
data). These data therefore provide evidence in favour of
a general role for FtsH (slr0228) in the removal of un-
assembled and/or damaged proteins from the membrane.

Where does PSII repair occur in cyanobacteria?

Although functional PSII complexes are definitely found
in the thylakoid membrane of cyanobacteria, there is still
uncertainty about the location of the sites of synthesis,
assembly and repair. In chloroplasts, repair of PSII is
thought to take place in the stromal lamellae (Aro et al.,
1993). For Synechocystis 6803, immunochemical data have
indicated that D1, D2, cytochrome 5-559, and the PsbO
subunit can be found in the cytoplasmic membrane (Smith
and Howe, 1993; Zak et al., 2001). It has therefore been
suggested that the cytoplasmic membrane might be the site
of synthesis of the minimal PSII reaction centre complex,
consisting of D1, D2, and cytochrome 5-559, which then
migrates into the thylakoid membrane to be assembled into
the holoenzyme (Smith and Howe, 1993; Zak et al., 2001).
However, pulse—chase experiments have not yet been
conducted to confirm that these subunits are first incorpo-
rated into the cytoplasmic membrane. This means that it is
still possible that the PSII subunits found in the cytoplasmic
membrane could be in the process of being degraded rather
than assembled (Smith and Howe, 1993). Another compli-
cation could be that the cytoplasmic membrane fraction
used in the localization studies might contain other types of
membrane system, distinct to the thylakoid and cytoplasmic
membrane. Since it is still unclear how proteins and lipids
move between the cytoplasmic and thylakoid membrane
systems, it is possible that there might be an interconnecting
membrane system in which assembly and repair occurs,
that co-purifies with the cytoplasmic membrane fraction.
Alternatively, if there is no physical connection between the
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thylakoid and cytoplasmic membranes, a vesicular trans-
port system must be invoked (Westphal et al., 2001).

Are ROS involved in D1 degradation in vivo?

A wide variety of studies conducted in vitro have led to
speculation that ROS are potential candidates for cleaving
D1 invivo (Mishra et al., 1994; Miyao et al., 1995). In such
a scenario, the primary cleavage event in the Qg-binding
pocket would be mediated by ROS. However, one of the
most dramatic observations following high-light treatment
of both the fisH (slr0228) mutant and var2 mutant of A.
thaliana is the persistence of full-length D1 in the thylakoid
membrane, despite extensive inactivation of the PSII
complex, and under conditions where D1 is degraded in
the WT controls. In the authors’ opinion this is convincing
evidence against an obligatory role for ROS in the direct
cleavage of D1 during PSII repair in vivo.

In agreement with earlier conclusions (Komenda and
Masojidek, 1995; Lupinkova and Komenda, 2004), it is felt
that D1 degradation in vivo should be considered to occur
in two modes depending on the severity of the irradiation
and the capacity for repair: (i) under ‘normal’ conditions a
totally enzymatic process (mediated by FtsH) performs the
selective replacement of damaged D1, without producing
detectable breakdown products, and (ii) ROS-mediated non-
enzymatic reactions occur under more ‘extreme’ conditions
when the ‘normal’ enzymatic removal of damaged subunits
cannot keep pace with the rate of damage by ROS. Under
these latter circumstances the resulting breakdown frag-
ments and aggregates that are observed might resemble the
products studied in vitro. Consequently, caution is urged
when linking breakdown fragments generated in vitro (or
under extreme conditions in vivo) to the ‘normal’ enzymatic
process of D1 turnover.

However, it is probable that under the more ‘extreme’
conditions of photodamage, oxidized forms of D1 and the
other PSII subunits, as well as their adducts, can be re-
moved from the cell by additional proteases not used in the
‘normal’ enzymatic process. These could include the DegP/
HtrA proteases and other uncharacterized soluble proteases
(Yamamoto, 2001; Mizusawa et al., 2003). However, this
route for PSII repair is likely to be less specific and slower
than the FtsH-mediated pathway.
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