Session 23 - Microbial derived biofuels

Investigating the link between fermentative metabolism and hydrogen production in the green

alga Chlamydomonas reinhardtii

Steven J. Burgess, Marko Boehm and Peter J. Nixon

Division of Biology and Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial

College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

In Chlamydomonas reinhardtii, electrons required for hydrogen production come from a combination

of biophotolysis and fermentation. Anoxia leads to the activation of several competing fermentative

pathways, breaking down carbohydrate reserves into formic, lactic, malic and acetic acid along with

ethanol, carbon dioxide and hydrogen. It has therefore been proposed that hydrogen yields can be

increased by switching off competing fermentative pathways.

The aim of this study was to investigate the link between fermentative metabolism and H₂ production

in C. reinhardtii with a view to aiding future efforts at metabolic engineering. A detailed bioinformatic

analysis of the genome was used to identify potential fermentative enzymes and pathways. Polyclonal

antibodies, raised against several of the putative fermentative enzymes following over-expression in E.

coli, were used to determine the location of these enzymes in the cell and to determine changes in

expression during anoxia.

Using artificial microRNAs (amiRNAs), knockdown mutants were created targeting key fermentative

enzymes and the resulting impact upon hydrogen evolution and fermentation products was assessed.

Keywords: Biofuels, algae, hydrogen, fermentation, Chlamydomonas